

Introduction to VVUQ | Part 4 Uncertainty Quantification

Task Group on VVUQ Concepts in Engineering Education

ASME Codes & Standards | Committee on Verification, Validation, and Uncertainty Quantification Contacts: Lydia Stanford (stanfordl@asme.org) | Daniel Papert (papertd@asme.org)

V. 1, February 11, 2025 © 2025 by ASME Task Group on VVUQ in Engineering Education is licensed under CC BY 4.0. To view a copy of this license, visit <u>https://creativecommons.org/licenses/by/4.0/</u>

Module Outline

- What is uncertainty quantification and why do we care?
- Steps of uncertainty quantification and how it is performed
 - Characterization of uncertainties
 - Propagation of uncertainties
 - Interpretation of uncertainties
- Sensitivity Analysis

What is uncertainty quantification and why do we care?

- **Uncertainty Quantification** (UQ) is the process of generating and applying mathematical models to provide a measure of uncertainty in the empirical or simulation results.
- Uncertainty Quantification has three basic steps:
 - Characterize Uncertainties: Identify all relevant uncertainties and characterize the uncertainties as much as is possible
 - **Propagate Uncertainties:** Perform model evaluations or modification to evaluate the input uncertainties through the model onto quantities of interest (QoIs)
 - Interpret Results: Compute and evaluate uncertainties
- Closely related is **Sensitivity Analysis:** The identification of which uncertainties have the largest effect on the QoIs. Sensitivity Analysis and Uncertainty Quantification are often iterated

Characterize Uncertainties

Propagate Uncertainties and Interpret Results

Results can be interpreted in many ways including:

- Mean and standard deviation
- Median and other percentiles
- Histogram or probability distribution

Closely related to UQ is Sensitivity Analysis where the importance of the parameters are identified and potentially ranked.

Various approaches:

- Local Sensitivity Analysis: Estimate sensitivity with small perturbations to the nominal uncertain parameters
- Global Sensitivity Analysis: Evaluate the sensitivity over the full range of the parameters

Sensitivity Analysis can be used to:

- Optimize design parameters to achieve system performance requirements
- Identify the largest contributors to uncertainty in system responses

References

- McClarren, R. G. (2018), Uncertainty Quantification and Predictive Computational Science, Springer, New York, NY
- Smith, R. C. (2014), Uncertainty Quantification: Theory, Implementation, and Applications, Society for Industrial and Applied Mathematics, Philadelphia, PA
- Saltelli, A., Ratto, M., Adres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Taratola, S., (2008), Global Sensitivity Analysis. The Primer, Wiley, England
- ASME (2019), "Standard for Verification and Validation in Computational Solid Mechanics." American Society of Mechanical Engineers, <u>ASME Standard V&V 10-2019</u>, New York, NY.
- ASME (2021), "The Role of Uncertainty Quantification in Verification and Validation of Computational Solid Mechanics Models," American Society of Mechanical Engineers, <u>ASME VVUQ 10.2-2021</u>
- Oberkampf, W. L. and C. J. Roy (2010), Verification and Validation in Scientific Computing, Cambridge University Press, UK.
- NaRC (2012), "Assessing the Reliability of Complex Models: Mathematical and Statistical Foundations of Verification, Validation, and Uncertainty Quantification." National Research Council of the National Academies, ISBN-13: 978-0-309-25634-6, Washington, DC.
- NA (2024), "Foundational Research Gaps and Future Directions for Digital Twins." National Academies of Sciences, Engineering and Medicine, DOI 10.17226/26894, Washington, DC.